
Supplementary Material for ReDro: Efficiently
Learning Large-sized SPD Visual Representation

Saimunur Rahman1,2[0000−0002−5250−5612], Lei Wang1[0000−0002−0961−0441],
Changming Sun2[0000−0001−5943−1989], and Luping Zhou3[0000−0003−1065−6604]

1 VILA, School of Computing and Information Technology, University of
Wollongong, NSW 2522, Australia

2 CSIRO Data61, PO Box 76, Epping, NSW 1710, Australia
3 School of Electrical and Information Engineering, University of Sydney, NSW 2006,

Australia
sr801@uowmail.edu.au; leiw@uow.edu.au; changming.sun@csiro.au;

luping.zhou@sydney.edu.au

1 Proof of equation (7) in the main text

In this section, we provide the proof of equation (7) mentioned in Section 3.2
(second paragraph) of the main text. Let us begin the proof by recalling equation
(6) in the main text,

X→ PX︸︷︷︸
Y

→ (YY>) ◦ S︸ ︷︷ ︸
Cb

→ (P>CbP)︸ ︷︷ ︸
A(Auxiliary)

→ f(A)︸ ︷︷ ︸
Z

→ · · · layers · · · → J(X)︸ ︷︷ ︸
Objective

(1)

According to equation (1), J is a composite function that has been applied
to X and it can be equally expressed as a function of each of the intermediate
variables as follows.

J(X) = J1(Y) = J2(Cb) = J3(A) = J4(Z) (2)

By the rules of differentiation, the following results can be obtained

δY = PδX, (3)

δCb = [(δY)Y> + Y(δY)>] ◦ S, (4)

δA = P>δCbP (5)

By the differentiation rule of a scalar-valued matrix function, we know that

δJ =

〈
vec

(
∂J3
∂A

)
, vec(δA)

〉
= trace

((
∂J3
∂A

)>
δA

)
(6)

where vec(·) denotes the vectorization of a matrix and 〈·, ·〉 denotes the inner
product. Combing the result with δA = P>δCbP in equation (5), we can obtain



2 S. Rahman et al.

δJ = trace

((
∂J3
∂A

)>
δA

)
= trace

((
∂J3
∂A

)>
P>δCbP

)
= trace

((
P
∂J3
∂A

P>
)>

δCb

)
= trace

((
∂J2
∂Cb

)>
δCb

) (7)

The last equality holds because from equations (2) and (6) we know that δJ

can also be written as trace
((

∂J2
∂Cb

)>
δCb

)
. Noting that Equation (7) is true for

any δCb, we can therefore derive that

∂J2
∂Cb

= P
∂J3
∂A

P> (8)

Note that ∂J3
∂A can be computed as ∂J3

∂A = Ûb

(
G ◦ (Û>b

∂J4
∂Z Ûb))Û

>
b , where

the (i, j)th entry gij of matrix G is defined as
f(λi)−f(λj)

λi−λj
if λi 6= λj and f ′(λi)

otherwise, where λi is the ith diagonal element of D̂b. Readers are referred to
[1] and [2] for the proof of ∂J3

∂A .

Again, combing δJ = trace
((

∂J2
∂Cb

)>
δCb

)
with δCb = [(δY)Y>+Y(δY)>]◦S

in equation (4), it can be obtained that

trace

((
∂J2
∂Cb

)>
δCb

)
= trace

((
∂J2
∂Cb

)>
([(δY)Y> + Y(δY)>] ◦ S)

)
(9)

By the identity that trace(A>(B ◦C)) = trace((B ◦A)>C), we can obtain

trace

((
∂J2
∂Cb

)>
δCb

)
= trace

((
S ◦ ∂J2

∂Cb

)>
((δY)Y> + Y(δY)>)

)
(10)

Denoting
(
S ◦ ∂J2

∂Cb

)
with Q, and applying the identity that trace(A + B) =

trace(A)+trace(B), trace(ABC) = trace(CAB) and trace(ABC) = trace((ABC)>),
we can further simplify equation (10) as

trace

((
∂J2
∂Cb

)>
δCb

)
= trace

(
Q>((δY)Y> + Y(δY)>)

)
= trace

(((
Q + Q>

)
Y

)>
δY

)
= trace

((
∂J1
∂Y

)>
δY

) (11)

Again, because we know δJ can also be expressed as trace
((
∂J1
∂Y

)>
δY
)

and
the last result is valid for any δY, it can be obtained that

∂J1
∂Y

= (Q + Q>
)
Y (12)



ReDro: Efficiently Learning Large-sized SPD Visual Representation 3

By substituting the value of Q in equation (12) and using the identitiy (A ◦
B)> = A> ◦B>, we then obtain

∂J1
∂Y

=

((
S ◦ ∂J2

∂Cb

)>
+

((
S ◦ ∂J2

∂Cb

)>)>)
Y

=

(
S ◦
(
∂J2
∂Cb

+

(
∂J2
∂Cb

)>))
Y

(13)

Again, combing δJ = trace

((
∂J1
∂Y

)>
δY

)
with δY = PδY in equation (3),

it can be obtained that

trace

((
∂J1
∂Y

)>
δY

)
= trace

((
∂J1
∂Y

)>
PδX

)
= trace

((
P>

∂J1
∂Y

)>
δX

)
= trace

((
∂J

∂X

)>
δX

) (14)

Again, because we know δJ can also be expressed as trace
((

∂J
∂X

)>
δX
)

and
the last result is valid for any δX, it can be obtained that

∂J

∂X
= P>

∂J1
∂Y

(15)

This completes the proof. In equation (7) in the main text, we omit the
subscript of J in its gradients with respect to A,Cb and Y.

2 Dataset information

In this section, we provide the dataset information mentioned in Section 4 (first
paragraph) of the main text. We perform experiments on four widely used public
image datasets, namely, MIT Indoor [8], Stanford Cars [3], Caltech-UCSD Birds
(CUB 200-2011) [10] and FGVC-Aircraft [7] to demonosrate the performance of
ReDro. Figure 1 shows the sample images from these datasets and more details
are given below:

MIT Indoor dataset is one of the most widely used datasets in the literature
for scene classification. It has a total of 15,620 images and 67 classes. Each image
class contains a minimum of 100 images. The images are collected from various
types of stores (e.g., grocery, bakery), private places (e.g., bedroom and living
room), public places (e.g., prison cell, bus, library), recreational places (e.g.
restaurant, bar, cinema hall) and working environments (e.g. office, studio).

Caltech-UCSD Birds or simply ‘Birds’ is one of the most reported datasets in
fine-grained image classification (FGIC) literature. It has a total of 11,788 images



4 S. Rahman et al.

Fig. 1. Sample images from the datasets used in our experiments. Rows 1, 2, 3 and 4
have the images from MIT Indoor, Caltech-UCSD Birds, FGVC-Aircraft and Stanford
Cars datasets, respectively.

and 200 image classes. There are subtle differences between these classes and they
are indistinguishable by human observers. This dataset comes with bounding box
annotations; however, we do not use any annotations in our experiments.

FGVC-Aircraft or ‘Aircraft’ dataset is relatively a smaller dataset but widely
used in recent FGIC methods. It has only 10,000 images distributed among
100 aircraft classes, and each class has precisely 100 images. Similar to Birds,
the classes have subtle differences between them and are hard for humans to
distinguish from each other. However, compared to Birds, the size of airplanes,
i.e., objects, are relatively larger in each image.

Stanford Cars or simply ‘Cars’ has a total of 16,185 images and 196 classes.
The classes are organized as per the car production year, car manufacturer and
car model. Cars dataset has relatively smaller objects, i.e., cars, than those of
the airplane dataset. Furthermore, the objects are appeared in cluttered back-
grounds. Table 1 gives a more concise summary of the datasets.

3 Implementation of ReDro

In this section, we provide the implementation steps of ReDro. Following the
Algorithm 1 in the main text, we implement ReDro in four phases:

1. Channel permutation. Given feature channels from the last convolutional
layer of the backbone CNN model and a permutation matrix generated at a
run-time, we perform permutation of the feature channels with the permu-
tation matrix.



ReDro: Efficiently Learning Large-sized SPD Visual Representation 5

Table 1. Summary of datasets

Dataset
Total
classes

Total
images

Predefined protocol
Major difficultyTraining

images
Testing
images

MIT Indoor 67 6700 5,360 1,340 difficult environment
Birds 200 11,788 5,994 5,794 subtle class difference
Aircraft 100 10,000 6,600 3,400 subtle class difference
Cars 196 16,185 8,144 8,041 cluttered background

2. Block-diagonal matrix computation. The permuted feature channels in phase
1 are partitioned into k equally sized groups and on each group, a small
covariance matrix is computed. Next, eigen-decomposition is computed for
each of the small covariance matrices, and the resultant eigenvalues and
eigenvectors are assembled in a block-diagonal manner.

3. Back-permutation of eigenvectors. Using the permutation matrix from phase
1, we then permute back the eigenvectors obtained in phase 2 to make the
random permutation in ReDro transparent to the subsequent network layers.

4. Matrix normalisation. Given the eigenvalues and eigenvectors from phases 2
and 3, we then apply the matrix normalisation.

Depending on the SPD visual representation methods (used in Section 4.3 in
the main text) and the availability of source code, we implement the above four

Table 2. Comparison of computational time (in second) for covariance estimation and
matrix normalisation by using or not using the proposed ReDro scheme. The forward
propagation time (F.P.), backward propagation time (B.P.) and the sum of forward and
backward propagation time (Total) are reported. The four methods to the left represent
the case not using ReDro. The case using ReDro is implemented upon DeepCOV [1]
with various k. The boldface shows that ReDro saves computational time

Matrix
Dimension

Mode
No ReDro used DeepCOV [1] using ReDro

MPN
-COV

[5]
Deep
-COV

[1]
IBCNN

[6]
iSQRT
-COV

[4]
with
k = 2

with
k = 4

with
k = 8

with
k = 16

128×128
Total 0.004 0.004 0.006 0.001 0.007 0.009 0.011 0.015
F.P. 0.003 0.003 0.003 0.0006 0.004 0.006 0.008 0.012
B.P. 0.001 0.001 0.003 0.0006 0.003 0.003 0.003 0.003

256×256
Total 0.013 0.013 0.014 0.006 0.011 0.011 0.013 0.020
F.P. 0.011 0.011 0.011 0.0053 0.007 0.007 0.009 0.016
B.P. 0.002 0.002 0.003 0.0012 0.004 0.004 0.004 0.004

512×512
Total 0.031 0.031 0.032 0.030 0.030 0.022 0.023 0.030
F.P. 0.025 0.025 0.025 0.0270 0.023 0.015 0.016 0.023
B.P. 0.006 0.006 0.007 0.0033 0.007 0.007 0.007 0.007

1024×1024
Total 0.097 0.097 0.121 0.097 0.090 0.076 0.056 0.062
F.P. 0.089 0.089 0.111 0.0872 0.072 0.058 0.039 0.045
B.P. 0.008 0.008 0.010 0.0095 0.018 0.018 0.017 0.017



6 S. Rahman et al.

phases by MatConvNet [9] using one or multiple layers. Our source code contain-
ing the layer implementations, experimental frameworks and dataset protocols
will be available online.

4 Computational advantage of ReDro

In this section, we provide the forward and backward propagation time of the
methods compared in Table 1 of the main text. Table 1 in this supplement ma-
terial shows the forward propagation time (indicated with “F.P.”) and backward
propagation time (indicated with “B.P.”) alongside with the total (i.e., forward
propagation+backward propagation) time (indicated with “Total”).

From the table, in addition to the discussions provided in Section 4.1 in the
main text, we can observe that ReDro saves the computation time of forward
propagation in learning large-sized covariance matrices, i.e., of the size of 512×
512 and 1024×1024. Meanwhile, note that as expected, ReDro will not save any
computation time for backward propagation since it is only applied to deal with
the eigen-decomposition in the forward propagation.

References

1. Engin, M., Wang, L., Zhou, L., Liu, X.: DeepKSPD: Learning kernel-matrix-based
spd representation for fine-grained image recognition. In: Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV). pp. 612–627. Springer (2018)

2. Ionescu, C., Vantzos, O., Sminchisescu, C.: Matrix backpropagation for deep net-
works with structured layers. In: Proceedings of the International Conference on
Computer Vision. pp. 2965–2973. IEEE (2015)

3. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-
grained categorization. In: Proceedings of the International Conference on Com-
puter Vision Workshops. pp. 554–561. IEEE (2013)

4. Li, P., Xie, J., Wang, Q., Gao, Z.: Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In: Proceedings of
the Conference on Computer Vision and Pattern Recognition. pp. 947–955. IEEE
(2018)

5. Li, P., Xie, J., Wang, Q., Zuo, W.: Is second-order information helpful for large-
scale visual recognition? In: Proceedings of the International Conference on Com-
puter Vision. pp. 2070–2078. IEEE (2017)

6. Lin, T.Y., Maji, S.: Improved Bilinear Pooling with CNNs. arXiv preprint
arXiv:1707.06772 (2017)

7. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

8. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: Proceedings of the Con-
ference on Computer Vision and Pattern Recognition. pp. 413–420. IEEE (2009)

9. Vedaldi, A., Lenc, K.: MatConvNet: Convolutional Neural Networks for Matlab.
In: Proceedings of the 23rd ACM International Conference on Multimedia. pp.
689–692 (2015)

10. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona,
P.: Caltech-UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of
Technology (2010)


