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Abstract—Shape, motion and texture features have recently
gained much popularity in their use for human action recog-
nition. While many of these descriptors have been shown to
work well against challenging variations such as appearance,
pose and illumination, the problem of low video quality is
relatively unexplored. In this paper, we propose a new idea
of jointly employing these three features within a standard
bag-of-features framework to recognize actions in low quality
videos. The performance of these features were extensively
evaluated and analyzed under three spatial downsampling and
three temporal downsampling modes. Experiments conducted
on the KTH and Weizmann datasets with several combination
of features and settings showed the importance of all three
features (HOG, HOF, LBP-TOP), and how low quality videos
can benefit from the robustness of textural features.

I. INTRODUCTION

Human action recognition in video is an active area of
research in computer vision, with many applications in vari-
ous fields including video surveillance, content-based video
archiving and browsing, and human computer interaction.

Actions in video undergo a wide range of variations
such as size, appearance and view pose, while more chal-
lenging problems such as occlusion, illumination change,
shadow, and camera motions remained difficult problems
that are actively studied today. One relatively under-studied
problem is the quality of videos. Current research on video
have focused on high-definition videos that offer tremen-
dous details and strong fidelity of signal. However, most of
these videos are not feasible for real-time video processing,
streaming data and mobile applications, particularly when
additional processing is required for the recognition of
actions in video.

Visual recognition approaches for images has recently
been extended for use in video sequences, with good
measures of succes. Particularly, bag-of-features (or bag-
of-visual-words) based methods have also shown excellent
results for action recognition [1]-[3]. Despite recent devel-
opments, the representation of local regions in videos is
still an open field of research. For representation of videos,
different spatio-temporal features have been considered in
literature. Many popular works [1], [4], [5] prefer utilizing
gradient and flow information to describe the shape and
motion that lies in the video. The use of textures are less
common [6], [7], though there are promising benefits that
can be leveraged.

Oh et al. [8], in establishing the recent large-scale

VIRAT dataset for continuous surveillance, provided nine
different downsampled versions of the data in the initial
version'), consisting of three spatial scales and three tem-
poral frame rates. The authors note that this is a “relatively
unexplored area” and that it is important to understand
how existing approaches will behave differently”.

Motivated by the known merits of different features and
the lack of work in low quality videos, we aim to investigate
and present viable approaches to this problem. In this paper,
we propose a joint utilization of shape, motion and texture
features for robust recognition of human actions in low
quality downsampled videos. This idea of representation
integrates these well-established feature methods in a new
way that alleviates their individual shortcomings. We also
investigate and analyze the performance of action recog-
nition reacts under two low quality conditions — spatial
downsampling and temporal downsampling. We conduct
an extensive set of experiments on two benchmark action
datasets, the KTH and Weizmann, both of which are already
low in frame resolution in its original form. Finally, the
viability of our proposed approach is further analyzed,
providing insights into good combination of features and
the importance of using kernels to provide a balanced set
of features that fit well to the data.

A. Related Work

Human action recognition has been studied extensively
in recent years [9]. From the the recent research in activity
recognition roughly, spatio-temporal video features can
be categorized into three main different categories based
on the nature of feature used for classification: dynamic
feature (motion), structure (shape) and texture, or implicit
or explicit combination of three. Most recent works employ
primarily motion and shape features [3]. Laptev [10] first
proposed the extraction of shape (HOG) and motion (HOF)
information from spatio-temporal interest points (STIP) to
classify human actions in video. More recently, Wang et
al. [5] proposed the use of dense trajectories with the same
way of encoding the shape and motion information. All
these methods appear to suggest that the combination of
shape and motion features performs better than using them
alone.

Spatio-temporal texture features such as LBP-TOP [11]
have also found their way to action recognition. Kel-

TAs of today, these downsampled versions are no longer available in
the current VIRAT version 2.0. Website: http://www.viratdata.org/
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lokumpu et al. [6] proposed the use of LBP-TOP descriptor
to recognize human actions by applying it on the entire
bounding volume area. Mattivi and Shao [7] applied LBP-
TOP over small video patches called cuboids which are
extracted from each interest point, resulting in a more sparse
representation of video sequences. Their approach managed
a promising accuracy rate of around 91% on the KTH
dataset.

II. SPATIO-TEMPORAL VIDEO FEATURES

In the following sections we describe the three types of
spatio-temporal features that can be extracted from action
videos, namely structural (shape), dynamic (motion) and
textural (texture) features. As structural and dynamic fea-
tures are somewhat related, we shall describe them together
in Section A, while textural feature is elaborated in Section
B.

A. Structural and Dynamic Features

Generally speaking, structural information in video em-
bodies the geometrical or shape-oriented variations found
spatially; dynamic information in video carries important
temporal information or changes of its structure across time.
These two forms of information are typically taken together
to exemplify spatio-temporal information in video.

For each given sample point (x,y,t,0,7), a feature
descriptor is computed for a 3-D video patch centered
at (z,y,t) at spatial and temporal scales o,7. In this
work, we employ the Harris3D detector (a space-time
extension of the popular Harris detector [12]) to obtain
spatio-temporal interest points (STIP) [10]. Briefly, a spatio-
temporal second-moment matrix is computed at each video
point u(;0;7) = g(;s0;s7) * (VL(;037)L(;;0;7m))T
using a separable Gaussian smoothing function g, and space
time gradients V L. The final location of the detected STIPs
are given by local maxima of H = det(u) — ktrace3(u)
[3]. We used the original implementation available online
and standard parameter settings i.e. k = 0.00005, 02 =
{4,8,16,32,64,128} and 72 = {2,4}, for original videos
and a majority of downsampled videos.Figure 1 shows the
Harris3D detector being used to extract STIPs on the KTH
dataset.

Fig. 1.

Harris3D feature detector on KTH data set

To characterize the shape and motion information accu-
mulated in space-time neighborhoods of the detected STIPs,
we applied Histogram of Gradient (HOG) and Histogram
of Optical Flow (HOF) descriptors as proposed by Laptev
in [10]. The combination of HOG/HOF descriptors with in-
terest point detectors produces descriptors of size A, (o) =
Ay (o) = 180, A¢(1) = 87. Each volume is subdivided into
ang Xn, xn, grid of cells; for each cell, 4-bin histograms of
gradient orientations (HOG) and 5-bin histograms of optical
flow (HOF) are computed [3]. In this experiment we opted

for grid parameters n,,n, = 3,n; = 2 for all videos, as
suggested in the original paper.

B. Textural Features

Textures are defined as statistical regularities over both
space and time, e.g. motion of birds in a flock which was
recently used for action recognition with good results. [7].

One of the most widely-used texture descriptor, Local
Binary Pattern (LBP) produces a binary code at each
pixel location by thresholding pixels within a circular
neighborhood region by its center pixel [13]. The LBPp r
operator produces 27 different output values, corresponding
to the 27 different binary patterns that can be formed by
the P pixels in the neighborhood set. After computing
these LBP patterns for the whole image, an occurrence
histogram is constructed to provide a statistical description
of the distribution of local textural patterns in the image.
This descriptor has been proved to be successful in face
recognition [14].

In order to be applicable in the context of dynamic tex-
tures such as facial expressions, Zhao et al. [11] proposed
LBP on Three Orthogonal Planes (LBP-TOP), where LBP
is performed on the three orthogonal planes (XY, XT, YT)
in the video volume by concatenating their respective occur-
rence histograms into a single histogram. LBP-TOP is for-
mally expressed by LBP — TOPpy pyr,Pys,Rx,Ry,Rz
where the subscripts denote a neighborhood of P points
equally sampled on a circle of radius R on XY, XT
and YT planes respectively. The resulting feature vector
is 3 - 2F in length. Fig. 2 illustrates the construction
of the LBP-TOP descriptor. As can be seen, LBP-TOP
encodes the appearance and motion along three directions,
incorporating spatial information in XY-LBP and spatial
temporal co-occurrence statistics in XT-LBP and YT-LBP.
In this experiment we apply the parameter settings of
LBP —TOP; 332,22 with non-uniform patterns as spec-
ified by Mattivi and Shao [7], which produces a feature
vector length of 768.

Feature histogram of a bounding volume

Fig. 2. LBP-TOP feature descriptor. Image from [6]

III. VIDEO DOWNSAMPLING

A video’s spatial resolution and temporal sampling rate
defines the amount of spatial and temporal information
it can convey. Spatial resolution is simply the video’s
horizontal pixel count by its vertical pixel count, i.e. frame
size. The temporal sampling rate defines the number of
discrete frames in a unit of time, i.e. frames per second
(fps) or Hertz (Hz).

In this work, we investigate the performance of action
recognition with low quality videos that have been down-
sampled spatially or temporally, proposing suitable features
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that are robust. For now, we first describe the spatial and
temporal downsampling modes that were employed in this
work.

A. Spatial Downsampling

Spatial downsampling produces an output video with a
smaller resolution than the original video. In the process,
no additional data compression is applied while the frame
rates remained the same. For clarity, we define a spatial
downsampling factor, o which indicates the factor in which
the original spatial resolution is reduced. In this work, we
fixed « = {2,3,4} for modes SD,, denoting that the
original videos are to be downsampled to half, a third
and a fourth of its original resolution respectively. Fig. 3
shows a sample video frame that undergoes SDs, SDj3
and SD,. We opted not to go beyond o = 4 as extracted
features are too few and sparse to provide any meaningful
representation.

(b) (©) (d)

Fig. 3. Spatially downsampled videos. (a) Original (SD1); (b) SD2; (c)
SD3; (d) SDy;

B. Temporal Downsampling

Temporal downsampling produces an output video with
smaller temporal sampling rate (or frame rate) than the
original video. In the process, the video frame resolution
remained the same. Likewise, we also define a temporal
downsampling factor, 5 which indicates the factor in which
the original frame rate is reduced.

It has been seen that high temporal resolution; with high
spatial resolution produces high dynamic range i.e. high
motion information. It is based on the assumption that non-
constant intervals would yield jerky motion, i.e. perceivable
discontinuity in the optical flow field. This assumption is
true for the majority of video sequences, which contain
motion, captured at the frame rate of 30 or less. Low quality
videos usually have this kind of motion discontinuity.

In this work, we use values of 8 = {2,3,4} for
modes T'Dg, denoting that the original videos are to be
downsampled to half, a third and a fourth of its original
frame rate respectively. In the case of videos with slow
frame rates or short video lengths (such as in the Weizmann
dataset [15]), 8 may only take on smaller range of values
to extract sufficient features for representation.

IV. EXPERIMENTS

In this section, we describe a set of extensive ex-
periments and their respective results, while analyzing
and comparing different combination of feature descriptors
discussed earlier. Experiments were conducted separately
for spatial downsampling and temporal downsampling to
demonstrate the strengths of specific features with respect
to each condition. We also provide a detailed elaboration of
the evaluation framework and settings used for the different
experimented datasets.

(a)

(b)

Fig. 4. Temporal Downsampling; (a) Original video (b) T'D2; (c) T'D3;

(c)

A. Datasets

We have conducted our experiments on two notable
action recognition datasets — the KTH actions dataset [16]
and the Weizmann dataset [15]. Both datasets are similar in
the way that they are captured in a controlled environment
with homogeneously uniform background.

KTH is the most popular dataset in literature for human
action recognition. It contains 6 action classes: walking,
running, jogging, hand-waving, hand-clapping and boxing;
performed by 25 actors in 4 different scenarios: outdoors,
outdoors with scale variation, outdoors with different cloths
and indoors. There are 599 video samples in total (one
subject has less one clip). Each clip is sampled at 25 fps and
lasts between 10-15 seconds with image frame resolution
of 160 x 120 pixels. We follow the original experimental
setup, i.e., divide the samples into test set (9 subjects: 2, 3,
5,6,7,8,9, 10, and 22) and training set (the remaining 16
subjects) [16], while reporting the average accuracy over
all classes as performance measure.

The Weizmann dataset was introduced by Blank et al.
[15]. It contains 93 video clips from 9 different subjects (3
subjects have one extra clip) with each video clip containing
one subject performing a single action. There are 10 dif-
ferent action categories: walking, running, jumping, gallop
sideways, bending, one-hand waving, two-hands waving,
jumping in place, jumping jack, and skipping. Each clip
lasts about 2-3 seconds at 25 fps (interlaced) with image
frame resolution of 180 x 144 pixels. Testing is performed
by leave-one-person-out cross-validation (as suggested in
[4]) i.e., for each fold, training is done on 8 subjects and
testing on all videos of the remaining held-out subject.

B. Evaluation Framework

A video sequence is represented as a bag of local spatio-
temporal features [16]. Spatio-temporal features are first
quantized into visual words and a video is then represented
as the frequency histogram over the visual words. In our
experiments, vocabularies are constructed with standard k-
means clustering with the number of visual words empiri-
cally set to K = 2000 to obtain a reasonably good perfor-
mance across datasets. To limit the complexity, we cluster
a subset of 100,000 randomly selected training features. To
increase precision, we initialize k-means 8 times and kept
the result with the lowest error. Features are assigned to
their closest vocabulary word using Euclidean distance. The
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resulting histograms of visual word occurrences are used as
video sequence representations.

For classification, we use a non-linear support vector
machine (SVM) [17] with a y2-kernel.
K
1 (hln —h 'n)2
K(H;,Hj) = —— ~= 9%
( J) = exp( 2An§:1 -

n Jjn

)

which was previously found to be effective for action recog-
nition [1]. Here, h;, and h;, are the frequency histograms
of the n-th word occurrences, K is the vocabulary size,
and A is the mean value of distances between all training
samples [18]. In some parts of our experiments, we also
tested with a linear kernel instead of x? kernel, which is
known to over-fit the feature data occasionally at higher
dimensionality. For multi-class classification, we apply the
one-against-rest approach and select the class with the
highest score.

C. Experimental Results

In this subsection we present the experimental results
in three parts, based on the original videos, spatially
downsampled videos and temporally downsampled videos.
For each part, we systematically compare and analyze
the performance of different feature descriptors, providing
further insights into the intuition behind the different feature
types. Experiments were conducted on an Intel Core-i7 3.6
GHz machine with 24GB RAM.

For ease of reporting, we will compare the following
combination of features and settings in all experiments,
denoted as follows: I. STIP; II: STIP-X2; III: STIP +
LBP-TOP; IV: STIP + LBP-TOP-x?; V: (STIP + LBP-
TOP)-x%. The HOG, HOF and HOG + HOF descriptors
will be used on the extracted STIPs, while LBP-TOP is
applied on the entire video volume. For features III, IV
and V, the STIP-based descriptors are concatenated with
the LBP-TOP at the histogram level.

1) Experiments on Original Videos: On the KTH
dataset, we obtained the best result of 94.91% using the
combination of HOG and HOF features (HOG+HOF) (see
Figure 5), which constitutes a histogram-level concatenation
of HOG and HOF as opposed to a descriptor-level con-
catenation (HOGHOF) advocated in [1], [3]. Figure IV-C1
shows that this clearly helps to elevate the overall accuracy
by 3-8%. However, on the Weizmann dataset (see Figure 6)
, we observe that there is less distinction between the three
tested features, with the HOF holding a slight advantage
in terms of performance. The best result of 94.44% was
achieved using HOF feature.

For both datasets, we also observed that kernelization of
specific features are able to strengthen results. For instance
on the KTH, HOF + LBP-TOP with an already impressive
93.06% accuracy, is even higher at 94.44% after kernelizing
the LBP-TOP features. This is most apparent when LBP-
TOP features are kernelized (see Figure IV-CI1). Other
features in consideration also show similar characteristic
except for HOF, which has negligible difference.

In short, dynamic feature (HOF) is notably essential for
effective action recognition on the original video samples.
Shape feature (HOG) is largely poor on all combinations,
but improves tremendously when paired with textural

Recognition Rate (%)

B HOG
[ HOF 1
[ 1HOG+HOF

Fig. 5. Recognition rate of different combination of features on original
KTH dataset videos

100

90

80

701

60

50

40

Recognition Rate (%)

30

20

W HOG
[ HOF 1
[ 1HOG+HOF

Fig. 6. Recognition rate of different combination of features on original
Weizmann dataset videos

feature (LBP-TOP).

2) Experiments on Spatially Downsampled Videos:
Table I shows the recognition rate of the five descriptor
combinations (I-V) with different STIP descriptors, on the
KTH dataset. Overall, the combination of STIP descriptors
+ kernelized LBP-TOP appear to dominate the best results
within each mode. This clearly shows the important role
of motion and textural information with respect to deteri-
oration of spatial quality. As expected, shape information
becomes less discriminant as spatial resolution decreases.
More promisingly, LBP-TOP contributes significantly more
(comparing IV to I and II) as the resolution quality de-
creases. Nevertheless, it performed well on the Weizmann
dataset but not on the KTH datasetwhen used entirely alone
(see Figures 9 and 10).

Combinations IV and V are the two most robust meth-
ods, where the STIP descriptors (particularly the HOF
feature) are combined with LBP-TOP to great effect; the
kernelized LBP-TOP achieving 87.5% accuracy rate at
a = 4. STIPs were extracted with k& = 0.0001,0.000075
and 0.00005 for SD,, SDs and S D, respectively to ensure
maximum number of interest points with respect to spatial
size.

3) Experiments on Temporally Downsampled Videos:
Both the KTH and Weizmann datasets have a frame rate of
25 fps; upon downsampling, T'D;: 12.5 fps, T'Ds: 8.33 fps
and T'Ds: 6.25 fps. Table 1 summarizes the recognition
rate of the five descriptor combinations (I and V) with
different STIP descriptors, on the KTH dataset. Similarly,
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Fig. 7. Comparison between recognition performance of HOG+HOF
(histogram-level concatenation) and HOGHOF (descriptor-level concate-
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Fig. 8. Recognition accuracy with and without y-kernel, on the original
KTH videos.

TABLE 1. RECOGNITION RATE (%) OF VARIOUS DESCRIPTOR
COMBINATIONS FOR SPATIALLY DOWNSAMPLED KTH VIDEOS

Mode | Combination | HOG | HOF | HOG+HOF
I 68.06 | 91.67 94.91
1I 7722 | 92.13 92.13
SDo 1 67.59 | 92.59 93.52
v 81.48 | 93.06 94.44
v 75.46 | 90.74 91.67
I 62.50 | 87.04 87.50
I 62.50 | 85.65 85.19
SDs3 I 62.50 | 87.04 87.50
v 77.31 | 88.43 89.81
v 71.76 | 86.57 85.19
I 56.94 | 81.94 81.20
I 57.94 | 80.56 82.87
SDy 111 62.50 | 82.87 81.02
v 78.24 | 87.50 86.11
\'% 69.44 83.8 84.26

we see a strong showing when LBP-TOP is incorporated
with around 3-6% improvement in accuracy. Again, this
demonstrates the importance of textural information when
temporal sampling rate is poor. On the KTH, we see that
the use of all three features (shape, motion and texture) pro-
motes robustness against deterioration of temporal quality
(Figure 11). Method IV commands a respectable 82.41%
accuracy rate at 5 = 4.

It is also worth mentioning that shape information be-
comes increasingly useful with the reduction of frame rate
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Fig. 9. Performance of selected combination of different features across
spatial downsampling modes for KTH dataset
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Fig. 10. Performance of selected combination of different features across
spatial downsampling modes for Weizmann dataset

TABLE II. RECOGNITION RATE (%) OF VARIOUS DESCRIPTOR
COMBINATIONS FOR TEMPORALLY DOWNSAMPLED KTH VIDEOS

Mode | Combination | HOG | HOF | HOG+HOF
1 76.39 | 87.04 91.20
1I 80.56 | 86.11 89.81
TD-> 111 75.00 | 88.89 91.20
v 80.09 | 89.81 92.59
A\ 79.17 | 87.04 91.20
1 68.06 | 76.85 82.41
1I 75.46 | 77.31 84.26
TDs 111 74.07 | 78.24 86.11
v 75.46 | 82.87 85.19
\'% 73.15 | 79.63 82.87
1 66.67 | 71.76 82.41
1I 73.15 | 73.15 81.94
TDy 111 69.44 | 73.61 77.78
v 74.04 | 75.46 82.41
A\ 72.69 | 69.44 81.48

(particularly for T'D,4 for KTH) since dynamic information
becomes more sparse and disjointed. Figures 11 and 12
show the performance of selected feature combinations for
different downsampling modes on the KTH and Weizmann
dataset respectively.

4) Future Directions: Based on this preliminary work
and the analysis of the results obtained, there are several
possible directions for future work.

We intend to extend our evaluation to videos from more
complex and uncontrolled environments [1], [8]. While
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temporal downsampling modes for KTH dataset
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Fig. 12. Performance of selected combination of different features across
temporal downsampling modes for Weizmann dataset

our experiments already point towards the sensitivity of
different features (shape information is sensitive towards
resolution, motion information is sensitive towards sam-
pling/frame rate), it will be interesting to investigate the
simultaneous effects of both spatial and temporal downsam-
pling. How well can textural features prop up the recogni-
tion capability? Also, the use of LBP-TOP in this work
merely illustrates the potential benefits of spatio-temporal
texture descriptors in general. We intend to explore other
spatio-temporal textural features that might exhibit more
robustness towards video quality.

V. CONCLUSION

In this paper, we explore a new notion of jointly using
shape, motion and texture features for action recognition
in low quality videos. To the best of our knowledge,
there are no existing systematic attempts to investigate
the problem of video quality, which is most relevant in
many consumer applications and real-life scenarios. This
preliminary work draws interesting conclusions on how spa-
tially and temporally downsampled videos can particularly
benefit from textural information, considering that most
common approaches involved only structural and dynamic
information. The combined usage of all three features
(HOG+HOF+LBP-TOP) outperforms the other competing
methods across a majority of cases. Our best method is
able to limit the drop in accuracy to around 8-10% when
the video resolutions and frame rates deteriorate to a fourth
of their original values.
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