Action Recognition in Low Quality Videos by Jointly Using Shape, Motion and Texture Features

Saimunur Rahman, John See and Ho Chiung Ching

Center of Visual Computing
Multimedia University, Cyberjaya
Motivation

• Local space-time features have become popular for action recognition in videos.

• Current methods focus on high quality videos which are not suitable for real-time video processing applications.

• Current methods handles various complex video problems (such as camera motion) but problem of video quality is still relatively unexplored [Oh et al'11].
Goal of this work

• Investigate and analyze the performance of action recognition under two low quality conditions:
 – Spatial downsampling
 – Temporal downsampling

• Joint utilization of shape, motion and texture features for robust recognition of actions from downsampled videos.

• Investigate ‘good’ feature combinations for action recognition in low quality video.
Related Works

• Shape and motion features
 • Space-time interest points [Laptev’05]
 • Dense Trajectories [Wang et al.’11]

• Textural features
 • Local Binary Pattern on three orthogonal planes [Kellkompu et al.’08]
 • Extended Local binary pattern on three orthogonal planes [Mattivi and Shao’09]
Outline

- Spatio-temporal video features
- Action recognition framework
- Video downsampling
- Experiments
Spatio-temporal video features

Action recognition framework

Video downsampling

Experiments
Spatio-temporal video features

• Shape and Motion Features (*structures and its change with time*)
 • Feature detector – Harris3D
 • Feature descriptor – HOG and HOF

• Textural Features (*change of statistical regularity with time*)
 • Feature detector and descriptor – LBP-TOP
Harris3D detector \cite{Laptev'05}

- Space-time corner detector
- Capable of detecting any spatial and temporal interest point
- Dense scale sampling (no explicit scale selection)
HOG/HOF descriptor [Laptev'08]

- Based on gradient and optical flow information
 - HOG – Histogram of oriented gradients
 - HOF – Histogram of Optical Flow
- Detected 3D patch (xyt) is divided into grid of cells
- Each cell is described with HOG and HOF.
LBP-TOP detector + descriptor [Zhao’07]

• Extension of popular local binary pattern (LBP) operator into three orthogonal planes (TOP)

• Encodes shape and motion on three orthogonal planes (XY, XT and YT)

• Calculate occurrence of different plane histograms to form final histogram ($H = h^{XY} \cdot h^{XT} \cdot h^{YT}$)
LBP-TOP in action
Spatio-temporal video features

Action recognition framework

Video downsampling

Experiments
Evaluation framework

Feature Detection+Description

Bag-of-words

Input Video

Harris3D

HOG/HOF

Codebook

Feature Encoding

LBP-TOP

SVM

Classification
Detection + description of features

Feature Detection

Spatio-temporal Description

Feature Vector Representation

Input Video

Interest Points

Textures

HOG

HOF

Shape - Motion

Dynamic Textures

Feature Vector Representation
Bag-of-words representation

Bag of space-time features + SVM with χ^2 kernel [Vedaldi’08]

Training feature vectors are clustered with k-means

An entire video sequence is represented as occurrence histogram of visual words

Classification with multi-class non-linear SVM and χ^2 kernel

Each feature vector is assigned to its closest cluster center (visual word)
Spatio-temporal video features

Action recognition framework

Video downsampling

Experiments
Video Downsampling

- Spatial downsampling (SD) decrease the spatial resolution.
- Temporal downsampling (TD) reduces temporal sampling rate.

<table>
<thead>
<tr>
<th>SD Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD_1</td>
<td>Original Res.</td>
</tr>
<tr>
<td>SD_2</td>
<td>$\frac{1}{2}$ Res. of Original</td>
</tr>
<tr>
<td>SD_3</td>
<td>$\frac{1}{3}$ Res. of Original</td>
</tr>
<tr>
<td>SD_4</td>
<td>$\frac{1}{4}$ Res. of Original</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TD Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD_1</td>
<td>Original F.R.</td>
</tr>
<tr>
<td>TD_2</td>
<td>$\frac{1}{2}$ F.R. of Original</td>
</tr>
<tr>
<td>TD_3</td>
<td>$\frac{1}{3}$ F.R. of Original</td>
</tr>
<tr>
<td>TD_4</td>
<td>$\frac{1}{4}$ F.R. of Original</td>
</tr>
</tbody>
</table>

Fig: Spatially downsampled videos. (a) SD_1 (b) SD_2 (c) SD_3 (d) SD_4.

Fig: Temporal Downsampling; (a) Original video (b) TD_2 (c) TD_3.
Preview of downsampling videos

Original Video

SD₂ SD₃ SD₄

TD₂ TD₃ TD₄
Spatio-temporal video features
Action recognition framework
Video downsampling
Experiments
Datasets

• Two popular publicly available dataset
 • KTH action [Schuldt et al.’04]
 • Weizmann [Blank et al.’05]
• Both captured in a controlled environment with homogeneous background.
Feature combination used

• Five different feature combinations

 - Combination I : (HOG + HOF) - linear kernel
 - Combination II : (HOG + HOF) - χ^2 kernel
 - Combination III : (HOG + HOF + LBP-TOP) - linear kernel
 - Combination IV : (HOG + HOF) + LBP-TOP - χ^2 kernel
 - Combination V : (HOG + HOF + LBP-TOP) - χ^2 kernel
KTH actions [Schuldt et al.’04]

• Total 599 videos divided in 6 action classes
• 25 people performed in 4 different scenarios
• Frame resolution: 160 x 120 pixels
• Frames per second: 25 (average duration 10-15 sec.)
• Followed author specified setup for training-testing splits.
• Performance measure: average accuracy over all classes
KTH original dataset - results

KTH dataset

HOGHOF vs. HOG+HOF
KTH original dataset – results (2)

• Best result for HOG+HOF (94.91%)

• HOG+HOF helps to elevate the overall accuracy by 3–8% 😊

• Kernelization of specific features are able to strengthen results
 • HOF + LBP-TOP : 93.06%
 • HOF + LBP-TOP - χ^2 kernel : 94.44% 😊

• HOF is more effective than HOG but improves when paired with LBP-TOP 😊
KTH downsampled videos – results

Spatial downsampling ($k=2000$)

Temporal downsampling ($k=2000$)
KTH downsampling videos – results (2)

• STIPs and kernalized LBP-TOP appear to dominate the best results within each mode 😊

• LBP-TOP contributes more with the deterioration of spatial or temporal quality (more significant in case of SD_4 & TD_4) 😋
 • Shape information are more important for low temporal resolution 😞
 • Motion information are more important for low spatial resolution ☹️

• Note: for STIPs detection in SD modes different k parameters are used
Weizmann [Blank et al’05]

• Total 93 videos divided in 10 action classes
• 9 people performed different actions
• Frame resolution: 180 x 144 pixels
• Frames per second: 50 (average duration 2-3 sec.)
• Performance measure: leave-one-out-cross-validation
Weizmann video sample
Weizmann original dataset - results

- Best result 94.44% for HOF.
- HOF+LBP-TOP dominate best result within each mode 😊
- Kernelization of LBP-TOP features are able to strengthen results 😊
- Kernelization is less effective for HOF features 😞
- Shape is largely poor on all combinations 😞 but performs better after combining with LBP-TOP 😊
Weizmann downsampled videos – results

Spatial downsampling
SD₂, SD₃ (k=2000) & SD₄ (k=1500)

Temporal downsampling
SD₂ (k=2000), SD₃ (k=400)
Weizmann downsamled videos – results (2)

- STIPs and kernalized LBP-TOP appear to dominate the best results within each mode 😊

- LBP-TOP contributes significantly more as the resolution quality decreases 😊

- Kernelized LBP-TOP achieves **best accuracy** rate at $\alpha = 4$ and $\beta = 3$ 😊
Effects of kernelization

Recognition accuracy with and without χ^2-kernel, on the original KTH videos.
Conclusion

• This work utilizes a new notion of joint feature utilization for action recognition in low quality videos.

• This work shows how downsampled videos can particularly get benefitted from textural information with shape and motion.

• The combined usage of all three features (HOG+HOF+LBP-TOP) outperforms the other competing methods across a majority of cases.

• Our best method is able to limit the drop in accuracy to around 8-10% when the video resolutions and frame rates deteriorate to a fourth of their original values.
Future Works

• Extend our evaluation to videos from more complex and uncontrolled environments [Laptev et al.'04], [Oh et al.'11]

• Investigate the simultaneous effects of both spatial and temporal downsampling on videos

• Explore other spatio-temporal textural features that might exhibit more robustness towards video quality
Thank You